

Рекомендации по организации компостирования растительных отходов в Минской области

Подготовлено МОО «Экопартнёрство» в рамках проекта «Развитие услуг в сфере управления отходами для сельского населения Пуховичского района Минской области»

Проект финансируется Европейским союзом

Пуховичский районный исполнительный комитет

Пуховичская районная инспекция ПРиООС

Международное общественное объединение "Экопроект "Партнёрство"

Содержание

Введение				
1. Цели применения компостирования	04 04			
 Влияние внешних условий. Технические характеристики. Подробное описание. Домашнее компостирование отходов. 	05 06 08 14			
7. Информирование населения	15 17			

Введение

Согласно Стратегии интегрированного управления ТКО Минской области на 2015-2029 гг. использование органических отходов в Минской области должно базироваться на относительно простых, недорогих и технологически эффективных методах. Компостирование растительных органических отходов (садово-парковых отходов), образующихся на территориях общего пользования, требует минимума предварительной обработки и в результате даёт качественный компостный продукт, подходящий для дальнейшего использования. Предприятия ЖКХ могут использовать получаемый компост в собственном производстве.

При определении количества компостируемых растительных отходов предполагается, что образование таких отходов в городских населённых пунктах составит 20 кг на человека в год. Объём растительных отходов, ежегодно образуемых в Минской области, составляет 15 927 тонн.

Nº	Регионы	Обслуживаемые районы	Компостируемые
п.п.			отходы, тонн/год
1.	Борисовский	Борисовский, Березинский, Крупский, Логойский,	5 318
		Смолевичский, г. Жодино	
2.	Дзержинский	Молодеченский, Мядельский, Вилейский,	1 342
		Воложинский	
3.	Молодечненский	Дзержинский, Столбцовский, Узденский	3 055
J.	тиолоде тепекти	дзержинекий, столодовекий, эзденекий	3 033
4.	Несвижский	Несвижский, Клецкий, Копыльский	800
5.	Минский	Минский	454
6.	Солигорский	Солигорский, Слуцкий, Любанский,	4 078
		Стародорожский	
7.	Пуховичский	Пуховичский, Червенский	881
'		,, reporterin	
	итого:	1	15 927

Ниже представлена информация, которая поможет предприятиям ЖКХ Минской области организовать компостирование растительных отходов. Согласно Стратегии в каждом регионе необходимо создать площадку для компостирования растительных отходов.

1. Цели применения компостирования

- 1. Снижение доли органических отходов, вывозимых на полигоны ТКО.
- 2. Снижение выбросов парниковых газов от полигонов ТКО.
- 3. Изготовление гумусных субстратов для использования в качестве удобрения или изолирующего слоя на полигоне ТКО.

Для изготовления компоста пригодны следующие виды отходов:

- бумажные отходы;
- пищевые отходы;
- садово-парковые отходы;
- древесные отходы.

2. Специфические особенности и требования

Предварительная обработка. Отходы необходимо:

- 1) собирать раздельно (крупные отходы от обрезки деревьев и кустарников необходимо предварительно измельчать);
- 2) проверять на содержание вредных веществ (например, элементов питания);
- 3) удалять вещества, которые затрудняют процесс компостирования (например, крупные куски плёнки).

Возможности использования полученного компоста. 1) в качестве органического удобрения для подкормки деревьев и кустарников; 2) отходы просева можно использовать для изолирующего слоя на полигонах ТКО.

Особые требования безопасности. Отработанный воздух установок для компостирования подлежит сбору и очистке, или необходимо проведение технических и организационных мер для предотвращения / снижения объёмов выбросов (особенно запахов).

Потенциальные риски для здоровья. В зоне приёмки и механической обработки отходов существует риск повышения концентрации в воздухе микроорганизмов и спор. Поэтому необходимо принять соответствующие технические меры и применять средства индивидуальной защиты (респираторы).

3. Влияние внешних условий

Инфраструктурные особенности. Установки для компостирования отходов следует размещать вблизи мест образования соответствующих отходов. Они должны иметь привязку к транспортным магистралям в целях организации вывоза и сбыта продуктов компостирования.

Рекомендуется соблюдать удалённость от жилых районов ввиду неприятного запаха и наличия животных, внимание которых компост может привлечь. Санитарно-защитная зона участков с компостированием отходов без навоза и фекалий составляет 300 метров.

Климатические условия. Ввиду наличия различных вариантов (открытые и закрытые установки) технология может применяться как при плюсовых, так при минусовых температурах. При сооружении открытых установок следует учитывать, что при высоких температурах повышается испарение, а низкие температуры сдерживают процесс биологического разложения. В этих случаях можно использовать специальные укрывочные материалы (например, мембранную плёнку).

Наличие рабочей силы. Компостирование открывает широкие возможности для трудоустройства как неквалифицированного, так и

квалифицированного персонала, а при использовании сложных технологий (например, туннельного компостирования) необходимы квалифицированные руководители и технологи.

4. Технические характеристики

Компостирование — это аэробный процесс, в ходе которого кислород реагирует при определённых условиях с органическими материалами, образуя СО2, воду и гумусовые соединения. Расход кислорода наиболее высок на первом этапе процесса, позже он снижается. В результате процессов биологического разложения материал естественным образом разогревается. В начале процесса возникают высокие температуры (примерно до 60-70 °C), которые приводят к сушке материала и его гигиенизации. К концу процесса температура медленно снижается.

Диапазон технологий компостирования чрезвычайно широк. Он охватывает как простые, открытые способы (буртовое компостирование под открытым небом), так и более сложные в техническом отношении и управлении закрытие системы (туннельное компостирование).

Требования к используемым отходам. Для получения хорошего продукта компостирования отходы должны отвечать следующим требованиям:

- отходы должны собираться раздельно и не содержать компонентов, выделяющих вредные вещества;
- структура материала должна обеспечивать хорошую аэрацию;
- соотношение углерода к азоту (C/N) должно составлять от 20:1 до 40:1 при адекватной влажности.

Оптимальным для быстрого компостирования является соотношение C/N 25:1 – 30:1. Однако допустимы и более высокие соотношения. В то

же время слишком высокая концентрация азота в исходном материале не допустима, поскольку в этом случае почти весь азот, содержащийся в органических веществах, превратится под действием микроорганизмов в аммиак. При величине pH > 7 высокая концентрация аммиака ведёт к его нежелательному выбросу в атмосферу.

Для уничтожения возбудителей болезней и семян сорных растений в ходе компостирования необходимо соблюдение температуры не ниже 55 °C, по возможности, непрерывно в течение 2 недель или температуры в 65 °C (в закрытых установках: 60 °C) в течение 1 недели.

Ожидаемые результаты. На выходе образуется следующее: 1) компост, 2) отходы и примеси, 3) биогаз и незначительный объём технологической воды. Для обеспечения стабильности и безопасности созревшего компоста он должен удовлетворять следующим требованиям качества:

- соотношение C/N значительно меньше 25 (для сельскохозяйственного использования);
- отсутствие повторного разогрева свыше 20 °C;
- сокращение объёма как минимум на 60 % по исходному материалу.

Преимущества:

- производство дефицитного продукта, пользующегося высоким спросом;
- возможность утилизации значительной доли отходов, что ведёт к разгрузке полигонов и других установок по переработке отходов, позволяя снизить вредное экологическое влияние и объём затрат;
- относительная простота обращения, высокая надёжность системы;
- относительно низкий объём инвестиционных средств;
- технология широко распространена и не имеет противников.

Недостатки:

необходимость раздельного сбора органических отходов;

- довольно высокая потребность в площади, длительный процесс;
- высокие требования к качеству могут обусловить проблемы при сбыте компоста;
- неприятные запахи вблизи установки;
- возможность переработки только органической фракции бытовых отходов.

5. Подробное описание

Для получения компоста высокого качества необходимо устранить попадание в готовый продукт вредных веществ из состава ТКО. Для этого органические отходы следует собирать раздельно и дополнительно обрабатывать перед компостированием.

Предварительная обработка может включать: 1) отделение примесей, загрязнений, 2) измельчение, 3) отделение металлов. Предварительная механическая обработка и смешивание разных органических отходов (например, листва, в ней много углерода, мало азота), пищевых отходов (много азота) позволяет получать оптимальное соотношение С/N и снизить объёмы выделяемого аммиака в начале процесса гниения.

Существуют две системы компостирования: а) открытое (буртовое) компостирование; б) закрытое компостирование.

Открытое буртовое компостирование (ОБК). Укладка отходов в бурты производится, как правило, экскаватором или автопогрузчиком. Бурты имею высоту от 1,80 до 3,00 м. Возможная форма буртов: треугольная, трапецеидальная или плоская. Средняя длительность процесса гниения органических отходов около 10-60 недель. Виды ОБК представлены на схеме (страница 11).

Закрытое компостирование. В системах закрытого типа компостирование происходит в герметизированных, т.е. лучше управляемых и

Статические способы

При укладке в бурты с активной аэрацией исходный материал должен иметь средний размер частиц отходов около 1 см, а при укладке в бурты с пассивной аэрацией – 5 см.

Пассивная аэрация

Динамические способы

Активная

Вследствие нагрева

аэрация

Подачей воздуха по трубам

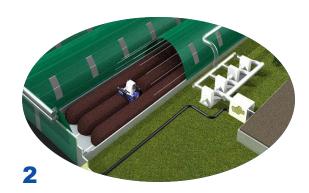
Путём регулярного перемешивания

оптимизированных условиях, что позволяет сократить длительность гниения и повысить качество конечного продукта. Возможны следующие варианты конструкций:

- 1. Цеховое компостирование (в плоских буртах). В данном случае отходы закладываются на компостирование в виде непокрытых плоских буртов в закрытых помещениях. Увлажнение происходит непрерывно через спринклерные системы и/или периодически при перемешивании. Аэрация буртов производится вытяжным способом. Воздух из цеха очищается в биологическом фильтре.
- 2. Туннельное компостирование. Способ аналогичен буртовому. Гниение происходит в полностью закрытом туннеле с подвижным днищем. Отходы непрерывно перемешиваются с деаэрацией и увлажнением в зависимости от степени гниения. Отработанный воздух оптимально отводить и очищать.
- 3. Боксы / контейнеры. Система работает в режиме загрузки-разгрузки со стационарным или передвижным днищем. Аэрация происходит через перфорированное днище, отработанный воздух отсасывается и очищается. По аналогии с туннельным способом интенсивное гниение длится 8-10 суток.
- 4. Горизонтальные вращающиеся барабаны (биобарабаны). В системе используются перфорированные чаны или барабаны, которые проще вращать. Она наиболее пригодна для предварительного разложения, поскольку обеспечивает хорошую гомогенизацию и механическое расщепление. С другой стороны, подвижные компоненты подвержены быстрому износу. Однако биобарабаны просты в изготовлении, использовании и обеспечивают быстрое гниение. Система больше подходит для небольших производств с невысокой производительностью и нехваткой квалифицированного персонала.

Часто встречается сочетание открытых и закрытых систем ком-

постирования на одной площадке. Для предварительного гниения больше подходят закрытые системы, а для окончательного разложения и созревания компоста применяются открытые.


Материалопоток. *Вход:* 100% биологических отходов. *Выход:* 2-3% отсеянных отходов входящих материалов; 1-2% отсеянных отходов готового компоста; 35-40% готового компоста (остальные 55-60% — потеря массы в результате разложения, испарения воды и выделения газов).

Оптимальные мощности. Производительность установок составляет от 300 до 20 000 т/год, причём основная масса установок имеет производительность около 14 000 т/год. Пропускная способность туннельных установок, как правило, выше в сравнении с контейнерными системами. Туннельные системы работают рентабельно при переработке 3 000 т отходов в год. Отдельные контейнеры имеют объём 50-250 м куб.

Требования к готовому продукту. Компост считается зрелым, если выполняются следующие требования:

– соотношение C:N <25;

- доля поглощенного кислорода <150 мг О2/кг/час;
- прорастание семян кресс-салата и редиса в компосте должно быть больше 90% по сравнению с контролем, а скорость роста растений в смеси компоста и почвы не должна отличаться от таковой в контроле более чем на 50%.

Посторонние материалы. Компост не должен содержать острых посторонних материалов во избежание нанесения повреждений человеку и животным.

В понятие «посторонние материалы» не входят почва, песок, камешки и гравий. Это понятие подразумевает любой материал размером более 2 мм, внесённый человеком и имеющий органическую или неорганическую составные части, такие как металл, стекло и синтетические полимеры (пластик и резина), за исключением минеральных солей, древесных материалов и камней.

Микроэлементы. Под микроэлементами подразумеваются химические элементы, присутствующие в компосте в очень низких концентрациях. Как правило, к ним относят медь, молибден, цинк и тяжёлые металлы, которые в зависимости от их концентрации могут оказывать опасное воздействие на человека и окружающую природную среду.

Патогенные организмы. Субстраты, на основе которых делают компосты, зачастую содержат патогенные организмы. Для того, чтобы обеспечить снижение количества патогенных организмов до требуемого минимума, должны соблюдаться следующие технологические условия:

- в контейнерах сырьё должно выдерживаться при температуре более 55 °C в течение 3-х дней;
- в буртах температура должна подняться до более чем 55 °C и продержаться, как минимум, 15 дней в ходе компостирования;
- в статической аэрируемой куче температура более 55 °C должна

поддерживаться в течение 3-х дней.

Другие характеристики. Максимально допустимой считается влажность 60% (от общей сырой массы) для компостов всех типов. Ком-пост – это восстановитель почвы, однако использование одного компоста в качестве среды роста для растений не рекомендуется. pH компоста не принято считать стандартным критерием.

Требуемая площадь. Потребность в площади для установок интенсивного компостирования составляет около 0,2-0,3 м²/т в год. Потребность в площади для открытых систем значительно выше. Она зависит от высоты буртов, их формы и используемой технологии перемешивания.

Так, например, для треугольных буртов с шириной основания 3 м необходимо 1,40 м²/м³. При отсутствии автоматического перемешивания требуемая площадь может снизиться до 1 м²/м³. Для трапецеидальных буртов высотой 3 м и шириной основании 10 м необходимо 0,45 м²/м³. Нередко способ компостирования и форма буртов выбираются исходя из размеров имеющейся площадки. При расчёте общей площади установки можно использовать следующие данные:

- 5 % зона разгрузки отходов;
- 10 % площадка для хранения готового компоста;
- 10 % зона промежуточного хранения и прочие участки;
- 75 % площадь гниения (из них 40 % для передвижения техники).

Площадка для производства компоста должна быть водонепроницаема для предотвращения загрязнения стекающими водами почвы и грунтовых вод.

Инвестиции. В объём инвестиций входят в основном следующие позиции:

- прокладка инженерных коммуникаций (в зависимости от местных условий и размеров установки);
- строительные конструкции: 70-100 евро/т в год;
- машины и оборудование: 110-140 евро/т в год.

Эксплуатационные затраты:

- текущая эксплуатация (ГСМ, электроэнергия, страховка и т.п.);
- ремонт и техническое обслуживание;
- строительные конструкции: около 1 % от объёма инвестиций;
- машины и электротехника: около 3-4 % от объёма инвестиций;
- мобильные устройства: 8-15 % от объёма инвестиций;
- заработная плата (в зависимости от ситуации на рынке рабочей силы).

6. Домашнее компостирование отходов

У населения, проживающего в сельской местности и в частном секторе в городах, образуется много растительных отходов, особенно в конце лета. Поэтому для предотвращения попадания отходов данного вида на полигоны ТКО нужно стимулировать людей использовать домашнее компостирование везде, где есть садовый участок.

Принцип производства компоста в домашних условиях позволяет превратить отходы в ценное органическое удобрение. Важно понимать, что компостирование носит добровольный характер и принудить людей к этому вряд ли получится.

Организация компостирования на садовом участке не связана с техническими сложностями. Существует целый ряд устройств для компостирования из дерева или пластика. Их можно сделать самому, например, из паллета или приобрести в садовом центре.

Самое сложное – побудить людей этим заниматься. Для повышения

успеха использования компостирования большим количеством людей очень важно предоставлять качественные услуги по вывозу остальной частиотходовипроводить постоянную информационную работу.

7. Информирование населения

Информирование населения на постоянной основе является главнейшим условием для побуждения людей к компостированию на приусадебных участках. Ниже представлены некоторые подходы для повышения мотивации населения к активному внедрению домашнего компостирования:

- вовлечение детей через организацию компостирования растительных отходов на пришкольных участках и проведения акций, квестов, конкурсов, розыгрышей;
- постоянная информационная работа с жителями (билборды, плакаты, брошюры, информация в жировках);
- проведение мастер-классов по изготовлению компостеров;
- снижение оплаты за вывоз ТКО для домашних хозяйств, где установлены компостеры.

Источники литературы и фотографий

Литература:

- 01. Германское агентство по защите окружающей среды. «Лучшие практики управления бытовыми отходами». https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2018-05-30_texte_40-2018-municipal-waste-management_en.pdf
- 02. Совет Канады по компостированию. «Ради любви к земле». «Создатель почвы». «Компост: направления использования». www.compost.org

Фотографии:

- с. 09. Википедия. Аэрация вследствие нагрева https://ru.wikipedia.org/wiki/Компост#/media/File:Compost_site_germany.JPG
- с. 09. Североамериканский журнал «Compost Advantages». Аэрация подачей воздуха по трубам https://wasteadvantagemag.com/organic-recycling-second-of-two-parts-the-15-benefits-of-aerated-static-pile-composting
- с. 09. Интернет-еженедельник о строительстве и обустройстве домов и загородных участков «RE-MOO». Аэрация путём регулярного перемешивания http://remoo.ru/sad-i-ogorod/kompostnaya-yama-svo-imi-rukami-varianty-izgotovleniya

- с. 11. Компании «BIODEGMA». Цеховое компостирование. http://www.biodegma.de/obszary-zastosowania.html
- с. 11. Сайт Стива Юигинса о биогазовых установках и пользе компостирования. Туннельное компостирование. https://www.build-a-biogas-plant.com/what-is-here/
- с. 11. Фермерское сообщество «Backyard Chicken Coops». Боксы / контейнеры для компостирования. https://www.backyardchickencoops.com.au/how-to-make-a-compost-bin
- с. 11. Американо-австралийская сеть магазинов для ремонта и строительства «Bunnings warehouse». Горизонтальные вращающиеся барабаны. https://www.bunnings.co.nz/diy-advice/garden/composting/how-to-make-your-own-compost
- с. 15. Фотоархив проекта «Развитие услуг в сфере управления отходами для сельского населения Пуховичского района Минской области»

Образцы информационных материалов представлены на сайте

www.ecopartnerstvo.by